

Reengineering Legacy to Modern (RL2M) System with One Time Checker

(OTC) for Information System Evolution

P. SUDHAKAR, P.SAKTHIVEL
Department of Electronics and Communication Engineering

Anna University

Chennai, Tamilnadu

INDIA
E-mail: kar.sudha@gmail.com

Abstract:- The prime focus of the information system evolution process is the aggrandize productivity and quality

of the various components of the system. The evolution process is always challenging as it leads to an increase in

overall complexity especially when the system changes are mostly confined to part of it. In this respect to improve

efficiency and decrease complexity, we propose a Reengineering model namely Reengineering Legacy to Modern

(RL2M) system. In this proposed work, reengineering technique is implied to demonstrate how modern system can

be obtained by converting a legacy system or application. This approach is developed to impose the dynamic

program slicing as a method, which is basically used for simplifying programs by focusing on selected aspects of

semantics. It also influences the value of the variable occurrence for a specific program input. The intermediate

outcome of RL2M is to compute the dynamic slices for the legacy system. The obtained slices would be converted

to a new system which is further integrated to a Very Large Scale Integrated (VLSI) application. In several VLSI

applications, the integration could be more tedious by mapping the entire system components. In this proposed

approach, a wrapper is created which acts as a common interface that would be linked with the legacy system for

effective conversion. During reengineering, all the legacy systems are not compatible with the new system, which

leads to inaccuracy. To avoid the issues of reengineering, we propose a method named One Time Checker (OTC)

for legacy system conversion. Before the implementation of the migrated system, the converting system enters into

OTC which is easily integrated with any reengineering approach. The main advantage of this proposed work is the

OTC can be integrated with any reengineering process and it is virtual to end user with respect to the application.

Key-words: - System evolution, legacy system, re engineering, dynamic slicing, wrapper, VLSI.

1 Introduction

 Legacy systems [1] are old computer systems

that is continuously be used as it still functions for the

user requirements. A software program in the legacy

system is expected to perform for many years and

undergo frequent updates and changes. Constant

changes to such legacy software systems are always

expected to face some quality issues. A way to

eradicate those problems in the legacy system is

Reengineering. The reengineering is a method of

analysis and gaining comprehensive knowledge from

the existing system so as to rebuild the source code,

according to the new system requirements. During the

new system development process, programmers have

higher level of abstraction in statement level, usually

with the help of an application development

environment. This paper describes an implementation

of a wrapper that can be used to translate/rehost

legacy programs into the new systems. A good

reengineering [2] approach should hide the

complexity of legacy system. It acts as an interface

between the applications. When the system is reusable

then the system components shared by the new system

so the repetition is avoided. If these components are

too complex then it is difficult to modify and extract

the information to new system. The cost, platform and

time are the main features that decide that the older

system is easy to maintain or to redevelop or redesign

the system to modern one.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 69 Issue 3, Volume 9, March 2012

Reverse Engineering

Forward Engineering

 Fig 1.1 RL2M System Overview

Major researchers are still working with

systems that were designed and implemented long ago

for various organizations. Those systems depend upon

some older technologies and their platforms would not

provide easy support to the users. Moreover it is very

difficult to add more functionality in a legacy system

and also too complex to recover from situations like

hardware failure, disaster etc., and Legacy system

needs continuous maintenance which requires

significant cost. The prices of the new system are

fallen so much recently and the things are feasible

because of wide availability of components. By

considering these factors, it is essential to modify or

transform the legacy system to the modern

environment. It is about retaining and extending the

value of the legacy investment through migration to

new platforms.The process of re-organising a system

so that related components are collected together in a

single module. Usually a manual process that is

carried out by system inspection and re-organisation.

The purpose of evolution is to provide change,

propagation and impact analysis.

The above diagram Fig 1.1 gives the simple

process activities in the overview of RL2M. The

translation of legacy to improved system is called

forward engineering and vice versa. In reengineering,

it is tedious to assure that the changes made in the

legacy system will not introduce any bugs in the

migrating system. The existing system is typically

structured into multiple components, each consisting

of hundreds of Lines of Code (LOC) and components.

Before migrating the source code to target code, we

should have at least a partial understanding of existing

software. The existing systems are often hard to

maintain, improve and expand is the reason behind the

migration. The basic reengineering tasks are

preparation for functional enhancement, improve

maintainability, migration, improve reliability etc., It

makes the software easier to change and improve its

reusability. The ultimate thing of Reengineering is to

keep the older system as it is and add the new things

to it that leads to target system.

 Migrating to a new platform leads to align

applications with current and future needs through the

addition of functionality and through application

restructuring. A process of converting a

predetermined code to another with a same or

different code is called code conversion. The code

conversion process consists of a number of specific

steps as follows: Design model target programming

system after analyzing legacy programming system

and its attributes, develop migration model and

associated procedures between legacy and target

systems. Convert the legacy code to modern language

through compiling/simulating the new test program,

refine models to correct anomalies, address,

omissions, and include upgrades and repeat these

process until desired level of migration is achieved. In

RL2M, the program slicing [6, 7] is used as the

debugging technique in the system extraction process.

The program slicing is a well established technique

for program understanding and comprehension. In

order to increase the precision of the program slicing,

refine the program slicing with dynamic point of data

which is known as dynamic slicing [7, 8]. For

Migration we use wrapping which surrounds the

existing thing, individual and application system and

acts as a interface with new operations. Hence,

reengineering with wrapping [4] gives a new and

improved look to a legacy system. If the legacy

system is infeasible then the good solution is to wrap

the legacy system. The time needed for wrapping is

minimum comparing to redeveloping or restructuring

which are the phases of reengineering.

Almost all the reengineering activities

perform a successful transformation. But they failed to

produce a perfect resultant system. Consider a legacy

system is highly constrained then the transformation

itself is a tedious one. After the transformation the

resultant system will not provide user friendly system.

More effort is requires to examine and alter the target

system which is a time consuming process. The

transformation is not possible for a large process and

erroneous task oriented system. Though the

transformation is successful, the updation to that

Legacy

System

Apply RL2M Modern

System

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 70 Issue 3, Volume 9, March 2012

target system in consideration of latest technologies is

a tedious task. During reengineering, it is tedious to

analyze the legacy system. The major problem faced

in the reengineering activity is that one-part of the

reengineering team have the knowledge on legacy

systems and others have only in the target system [3,

4]. Based on the assumption, the transformation is

made especially in the situations such as bigger size,

time pressures, the exclusive functions of legacy and

target systems etc., as they are incompatible with each

other. In reengineering there are many possibilities for

the incompatibility, inaccuracy moreover they are

very contrast with each other. Our proposed RL2M

also faces all those problems. For this purpose, we

propose a method named One Time Checker (OTC)

for legacy system conversion. As name implies OTC

checks the target system once again for its user

requirements satisfaction. Our proposed OTC is not

built for RL2M it is only implemented in RL2M.OTC

is easily integrated in any reengineering approach

which enhances the reengineering process.

This paper is structured as follows:

In Section 3, we propose a slicing algorithm

and a method for debugging and converting a legacy

system to modern system. In section 4, we implement

the proposed method with some C++ programs and

give the experimental results. In section 5, we propose

a method to enhance a reengineering approach. In

section 6, that enhancing approach is implemented in

our RL2M and the results are discussed. In section 7,

we conclude our discussion with the presentation of

further enhancement of our proposed approach.

2 Related Works

 In the literature, only few things are available

which address database reengineering and software

quality. Manual translation of legacy to modern

system is the most common approach. In this

approach, two editors are required for legacy and

modern system separately. The effectives of the

manual translation process are determined by the

degree to which the legacy code meets the

compatibility considerations. It is impossible for

migrating large programs using manual conversion

such as VLSI. Another approach is an automated

translation of legacy system to modern language. This

approach performs rigorous analysis on a legacy

system, providing detailed output on the changes

required to the new system. This approach allows easy

movement between legacy and modern language. But

the effectiveness measured by means of technique and

the effort put on that technique. Existing research

work extracts the legacy system such as rules. Many

approaches to the reuse and integration of legacy

system took place in the previous works. In legacy

system modernization, number of approaches is

available and several techniques were proposed. Some

of the work presents a generalized model of the

software life cycle that recognizes explicitly the

legacy system to the attainment of new system from

reusable components.

3 RL2M System Architecture

 In this paper, we propose a new model called

Reengineering Legacy to Modern system (RL2M) for

abstracting source code from legacy system. This

approach involves the functionalities: (1) Program

analysis (2) Identification of the constructs from the

legacy system (3) Slicing of the code (4) Mapping

source and destination program to create template (5)

Creating a wrapper (6) Execution (7) Integrate to

VLSI application. The RL2M architecture is shown in

the figure Fig 3.1. Initially, the source program is

analyzed that implies the inventory of all applications

“artifacts”. In this step, we have to analyze all the

components of the legacy system including tables,

views, indexes, data profiling. In the constructs

identification, the legacy program is taken with

various constructs. Then the program with required

constructs is categorized according to control flow

activities. It also enables to check whether the legacy

system follow the syntax and semantic. The primary

requirements for these construct identifications the

input source program should be executable in the

desired environment. These programs are categorized

depending upon the constructs. If all the requirements

are satisfied, then the legacy program is compiled that

yields a batch file for the program slicing.

For the given input program the slices are

computed for obtaining the program slice of smaller

size or of equal size in the worst case for the particular

extension of the program. Dynamic slicing is one of

the program slicing techniques where the source

program decomposes and produces the slices.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 71 Issue 3, Volume 9, March 2012

 Fig 3.1 RL2M Architecture diagram

 The input program contain faults in which

program slicing determine those statements and the

failure has been revealed for a given input .It finds all

the statements in a legacy system that affects the value

of the variable occurrence. It is used for simplifying

programs by focusing on selected aspects of

semantics. It consists of statements that influence the

value of the variable occurrence for a specific

program input. It also distinguish between multiple

occurrences of the same instruction .Program slicing

has the ability to assist in tedious and error prone tasks

.In RL2M a novel algorithm is presented below to

perform a program slicing, This algorithm initially get

the input program and defines the slicing criteria in

which the slicing variable is initialized. The algorithm

further splits a program and checks the program for

errors. This algorithm checks the input program

without tedious computational complexity also with

less time.

3.1 Algorithm for Program Slicing

1. Get the Input program to be sliced

2. Define the slicing criteria (s , v) where s =

statement number, v = slicing variable

3. Check whether the slicing variable v is

present in statement number s in the Input

program

4. If v is available in s, go to step 5, else escape

line l and continue

5. Let k = v; count_line = 0 ; array

found_variables[] = v

6. For each statement line l in Input program

statements

{count_line = count_line + 1

 If variable k is present in l then

 { move the statement line k to an

array found[] }}

7. line_no = 0
8. Let converted [] to store converted code, st as

statement, cmt as comment and fn as function

9. For each statement line l in array found[]

{Let variable k = found [line_no]

If variable k = st then

{Convert k and Add to array

converted [] }

If variable k = fn then

{Convert k and Add to array

converted [] }

If variable k = cmt then

{Add k to array converted [] }

 line_no = line_no + 1 }

10. Display array converted[]

The application of this algorithm are

architecture reconstruction, identify reusable

functions, program comprehension, debugging and

maintenance. Hence the flaws are relieved from

legacy systems. If all the requirements are satisfied

for the computed slices, then the RL2M system will

create a corresponding file that contains the main

function of a target system as a template. A template

method defines the program skeleton of an algorithm.

The mapping is a collection of objects that specifies

the transformations that are required to migrate a part

of the legacy system. The dynamically sliced

construct of the source program and the obtained slice

are mapped to the destination program .It is

sophisticated to the user while the proper name given

for the template because the destination target system

attain the output position. This is necessary that the

Execution VLSI

System

Program

Slicing

Mapping Template

Creation

Program

Analysis

Constructs

Identification

Wrapper

Creation

Input Program

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 72 Issue 3, Volume 9, March 2012

sliced output is again converted to the source code

rather than contain the instructions number alone and

avoid overlapping or collisions between the legacy

systems.

Wrapper is a popular software component that

converts a system from one version to another.

Legacy systems can be used on various models

ranging from standard file structures to relational and

data models. To deal with this heterogeneity, a

wrapper must hide the model that a legacy system

implements by providing a more and common model

e.g. a canonical model that is highly generic and more

flexible than the legacy systems. Wrapping surrounds

the existing data, individual program, application

system and interfaces with new operations. Hence

wrapping gives a new and improved look which

allows reusing legacy components. This component

helps in complex problems which unlocks the value of

the legacy input and open a new solution to rebuild

the legacy system. In RL2M it actually includes a new

source to a legacy system by act as a interface

between them. When the legacy system are kept

unchanged, while the new component is designed and

developed by the modern practices. Wrappers are used

to extract, update and control the implicit constructs

of the legacy system by the preceding steps. Wrappers

provide robustness and also deliver a target system in

a effective manner to the user. It is typically

encompasses a combination of other process such as

reverse engineering, restructuring and forward

engineering.

Execution is the process by which

a computer or a virtual machine carries out the

instructions of a computer program of new

application. The instructions in the program trigger

sequences of simple actions on the executing machine.

Those actions produce effects according to

the semantics of the instructions in the program. The

migrated code will be used in a VLSI application

where Integrated Circuit (IC) contains millions of

transistors, each a few mm in size for a specific

function. Because of wide ranging of application, the

destination program is applied in VLSI application. It

is laborious since it has characteristics such as process

variation, stricter design rules; first-pass success etc.,

Integration of VLSI sometimes leads to serious effects

which are avoided by OTC. To convert a legacy

system to modern system is the RL2M first preprocess

the input legacy system for their functions and then

convert the functions to the modern system.

Each of the above mentioned process in the

RL2M has got their own importance. The assumptions

made are that during the slicing of the required

constructs it is necessary in getting back the input

program and should ensure efficiency and accuracy of

target system. Hence, each process is in turn

dependent on each other. The entire RL2M is going to

be sequential. No process can be give priority. The

RL2M has to be carried out sequentially not

simultaneously.

4 RL2M: Experiments and Results

 We have conducted an experiment by using

RL2M model to evaluate how program slicing works

and the source code converted to modern language.

We considered a partially Object Oriented (OO)

language like C++ as the legacy language. Though it

supports several OO features, it has some limitations

such as security constraint due to usage of pointers. It

does not support network interface and hence cannot

be used in web based projects. Unlike Java it is also

not platform independent. OO programming has

many positive aspects over the non object oriented.

Many legacy systems were developed before the OO

programming concept. Most reengineering activities

focus on the functionality of the original program, and

the OO redesign results entirely new in which only the

designer understand the original program. These are

not sufficient as they not only take more time and also

required more effort for designers besides it is mistake

prone due to the human involvement. Hence

conversion of non object oriented to object oriented

language is the need of the hour. Our experiment dealt

with this kind of conversion to convert the partially

OO code to purely OO code. It is infeasible to convert

C++ to Java also it is too costly and time consuming

process while redeveloping. But in our RL2M the

wrapping takes place for conversion it leaves the code

in current environment and connects to a new

environment with a minimum change to legacy

system. RL2M hides the legacy C++ program and

performs the execution of Java. The process of our

proposed RL2M is explained below with suitable

examples.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 73 Issue 3, Volume 9, March 2012

 RL2M gets the legacy input C++ program first,

and then the processor analyzes the statements of the

legacy code. It also identifies all the input statements

so as to replace it by their equivalent Java program.

Header files and access specifiers are inserted in the

template. The branching and looping statements are

similar in both the legacy and new application but for

planning each and every statement into java file, these

simple constructs are identified and the conversion

takes place. For object identification the character is

checked to be either object or a variable. If it is a

variable the data types, if it is an object they can be

created only with class name which for a user defined

data type. Hence the object identified and replaced

with new operator in the java statements. Hence the

objects are identified to the class objects and not

variables and replacing the operator with thus

performing the require operation. The operators +,-

and * are converted in RL2M as operatorMinus,

operatoPlus, operatorMul respectively. Any other

normal arithmetic operations are to be left as such

without converting in this approach.

 Fig 5.1 Retrieving a CPP program as Input

 The above figure Fig 5.1 shows a step of

retrieving a CPP program which would be converted

to Java. The CPP program is collected from the

computer system by entering the path it has been

stored in the system. After the input is given to

RL2M, we have to run the RL2M model so as to

convert the input C++ to output Java. For this

retrieving step we must have a collection of C++

programs with various constructs. These programs are

categorized depending upon the constructs. The C++

program may or may not contain the classes by

default. This process analyzes the program for the

construct type that undergoes the slicing algorithm to

identify the flaws in the taken C++ program,

 Fig 5.2 A successful conversion of CPP

 The above figure Fig 5.2 gives the successful

conversion of CPP to Java. The converted program

which will be stored in the directory where the input

CPP is stored. The output Java is viewed on Java

editor and can be compiled in that same editor.. After

compilation, a Java class is created for the CPP input

and the class content corresponding to the functions

and statements, which are to be mapped later. The

main program contains the structure of main with the

main method in which the functions from class

program can be called at runtime while mapping with

file contents CPP into JAVA as output. The output of

the slice is mapped to Java for creating a Java

program to obtain the Java template of classes and

main function. The experiments were conducted for

more than 50 programs and the results are discussed

below.

87

88

89

90

91

92

93

94

95

96

97

if…else switch do…while while for

Fig 5.3 Percentage Efficiency in code conversion for

control structures

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 74 Issue 3, Volume 9, March 2012

The graph given above in Fig 5.3 shows the

efficiency of the RL2M experiment that was

conducted for various control structures and the

performance of RL2M which yields significant

performance in code migration. The various

constructs in C++ is successfully converted to Java

and as it yields a good efficiency. Our proposed

method is evaluated based on the cost of execution

and how they get to the desired accuracy. All of our

results were generated from independent experiments

and the results are averaged for further work. A static

cause which allows errors to occur when the internal

state of a program is invalid or a legacy program is

invalid. If it is a case examine an input program to see

what is supposed to do and what is not supposed to

do. This type of inconvenience is reduced by means of

OTC which is discussed later.

0

10

20

30

40

50

60

70

80

90

co
str
uc
to
rs

fun
c ti
on
 o
ve
r lo
ad
ing

inh
e r
ite
nc
e

inl
ine
 fu
nc
tio
n

ex
ce
pti
o n
 h a
nd
lin
g

Series1

Fig 5.4 Percentage efficiency in code conversion for

various OO concepts

 The above graph in Fig 5.4 contains the main

results of the experiment conducted and compares the

performance of various OO concepts which undergoes

RL2M technique. It yields a good result for

constructors, inheritance, function overloading. But

the migrating java not merely supported the concepts

like inline functions. If we compile the legacy system

as like inline functions or graphics it is tedious to

programmer to compilation and execution and the

human involvement is necessary. To eliminate these

bugs it is necessary to check the target system before

going to execution. This complexity is very common

in all reengineering approaches. Apart from these the

transformation is successfully done for constructs like

overloading, conditional branching, iteration

statements, arrays and compound statements. The

number of incorrectly converted programs is sampled

and sends for experiment after integrating OTC. There

are numerous rules defined for these conversion and

they were discussed below.

 The major reasons for reengineering fails

in the reengineering process itself because

reengineering method did not avoid the contrast

between the legacy system and target system and the

human consideration is needed. The manual

debugging process does not sophisticate for each

and every process and it is impossible for process

like VLSI. Our proposed RL2M efficiently handles

this situation. For our taken examples it gives good

results. Although it gives successful conversion it

fails in input programs like inline functions,

graphics etc. To overcome these drawbacks and to

enhance all reengineering approach, we propose an

automated technique name as OTC. This OTC helps

to removes the bugs in target system successfully

and enhances the approach easily.

5 OTC

The main challenge in any reengineering

approach is to take legacy system and deliver a good

translation methods and attributes, which leads to a

new target system that keeps the older functionality

while applying translation method without any serious

defects. For this purpose, OTC is a sophisticated and

valuable methodology for the reengineering. It applies

a gradual process in a reengineering approach and

produces a target system which satisfies the target

system compatibility and requirements. As name

implies OTC checks the target system once again for

its user requirements satisfaction. It based on Meta

programming. It is applied as pattern based generation

and it is automated task.OTC mainly used in

situations like hard to derive target system

complicated transformations, VLSI integration, time

consuming process etc.,

Each system has its own peculiar and

exclusive function. All systems follow some unique

patterns. Our aim is to define and identify that pattern

before the implementation of the converted target

system. This approach is automated wherein the

manual conversion is also available as optional at the

stage of execution of target system. Our approach is

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 75 Issue 3, Volume 9, March 2012

suggested for many business organizations as it

captures the legacy system and represents them

accurately. To overcome all the above mentioned

drawbacks on every approach, we introduce a new

method where the bug detection and rectification is

done on target system. The basic requirements

expected for OTC is a legacy system and the method

for reengineering. The compiled legacy systems that

were obtained by debugging techniques such as

program slicing, breakpoints etc., undergoes a

reengineering transformation process and produce a

target system. Our method is to check and ensure that

target system for their peculiarities and exclusive

function. This proposed new method is named as One

Time Checker (OTC) which takes place before the

compilation and execution of target system after the

reengineering process.

 OTC provides very easy and user friendly

conversion system that will support all the platforms.

It also provides the integration among the resource

sharing with the distributed environment along with

the new technologies such as web services and

traditional methods. In addition, our proposed

component suit for different programming languages

that would be able to communicate with the network

also. The idea for this technique is quite simple based

on a fact that each system has its own peculiar and

exclusive function. In this OTC, tokenization will be

performed which is a linear one. The set of delimiters

which defaults to common whitespace characters may

be specified at creation time or on a one token basis.

In this OTC, we have built-in functions which

comprises of Libraries, Tokenization, Pattern

matching and the special function contains the

appropriate errors and their solutions. After the

termination of reengineering process the resultant

system is inserted into OTC then the target system is

obtained. In this OTC flag is introduced when the flag

is true then the resultant is ready for compilation and

it is false then we ensure that the resultant system

contains some serious errors or exceptions. When it

leads to false then the human interaction may be

needed for examination. For this purpose we develop

a window which contains error and warnings. It is

automated and produces almost accurate translation

and the system is ready for compilation where the

interference and incompatibility between legacy and

target system are avoided. This OTC is possible to

develop for all the systems and it is very easy to

integrate with any reengineering approach. The

manual compilation is minimized because of this

automated error debugging task. The proposed

process diagram is given below fig 5.1

 Fig 5.1 Process diagram of OTC

 The OTC provides many modules which

happen sequentially. The modules presented are (i)

Tokenize (ii) Pattern Matching (iii) Debugging.

Tokenize function breaks the code into tokens based

on their creation time. It does not distinguish the

legacy and target code but the libraries take care of

that. Tokenization is a simpler task. Standardized and

updated libraries provide a generic way to access the

exclusively features of target system in pattern

matching. At pattern matching the executed code is

matched and sends for verification. All the system has

a particular structure which is verified for pattern

matching. In this rule based matching is performed.

To successfully store and retrieving the executed

program we provide a Hash table which contains a

key which implement the method. OTC provides

program debugging, testing, parallelization,

integration, safety, understanding, maintenance and

metrics and so it acts as power of reengineer

approach. The primary goals of this OTC is to provide

a simple , familiar, architecture neural, portable and

high performance to end user, The module diagram of

OTC is given below in Fig 5.2.

Legacy

Target system

execution and

compilation

Target System

Reengineering

Process

OTC

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 76 Issue 3, Volume 9, March 2012

 Fig 5.2 Module diagram of OTC

In debugging module, the most probable

errors and their solutions are stored. This automated

debugging point out the appropriate errors and

replaces it with correct one. In this module we store

and retrieve the possible error. There is no need for

special computation technique for debugging. Hence,

the target system compilation becomes easy. In this

OTC there are some constraints such as it support

only one terminal, and the information handled in

OTC is text based. It is possible that more than one

user can use this OTC at a time simultaneously but it

is same as that of the reengineering approach.

 When OTC is integrated in reengineering

approach the main criteria to consider is time. It may

take more than 12 seconds and less than 1 minute

depends upon the task and the program input.

Although it takes more time it completely reduce the

programmer burden at the time of debugging. The

OTC automatically replaces the abrupt errors also it

carries many corrective measures. By considering

these factors the time consumption of the proposed

OTC is negligible also it equalized that time in

compilation and debugging of the particular target

system. The above described OTC and their time

consumption properties are describe below with

suitable examples.

6 OTC: Experiments and results

 Experiments were conducted for our proposed

system and the results discussed below. In our

experiment in RL2M C++ act as legacy and the

resultant is Java. Legacy source is inserted to the

transformation approach and the OTC integrates with

it. After reengineering, tokenization is the simple

method its performance is based on creation time and

a per-token basis. It breaks statements into tokens. A

tokenization maintains a pointer which maintains a

current position past the characters and it advances the

current position. At the next module, the obtained

tokens are matched with predefined inbuilt OTC

libraries. In this, transformed statements scattered

throughout the program for finding the irrelevant

statements when it found irrelevant statements it takes

automated corrective measures. The matching is made

efficient by the use of some data structures search

techniques.

 We conducted the matching by hash table where

searching and matching are sequentially. The OTC

debugging is different from compilation and

execution. This module omits some abrupt errors. In

this module some appropriate errors stored and the

corresponding solutions also given. There is another

option where the ideas inserted as comment lines.

Human interaction is not possible because it works

virtually but it is available at the end of transformation

where the flag became false if it is true it is ready for

compilation.

 OTC is the most powerful techniques to

transform existiong syetm to modern system. It

provides unique features like a detailed output on the

changes necessary will make transformation a much

more efficcient and reliable process. It is able to

integrate on any reengineering process and there is no

need to free up memory which are considered to be

the significant benefits of OTC. As the experiment

results conducted on OTC, it gives increased

performance and reduced burden of target system

compilation. The future work may be the extension of

the transformation to highly tedious legacy systems

with minimum time requirements. The process is

much more efficient and give considereable

improvement when the modules grouped together as

a single unit in the target compiler itself. OTC takes a

few times more for execution as it built in with

reengineering approach. The following time

considerations are explained below. The time

consumed for OTC and non OTC process conducted

on various programs are given in Table 6.1.

 OTC

Debugging Pattern

Matching

Tokenization

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 77 Issue 3, Volume 9, March 2012

 Table 6.1 Time consumed by various programs

 This table concludes that the time needed to

OTC is high than non OTC process but it is negligible

on performance aspect of view because abrupt target

system errors takes more time to compile also it is

very tedious. The efficiency of OTC is further

explained in the Fig 6.1. All the input is once again

check in this OTC to ensure the target system

functionalities. In our experiment the considered

graphics functionalities input system is successfully

traced by OTC and it suggested by the java

functionalities such as AWT components. Then the

user interaction made easier where the programmer

complexity reduced considerably. The results of this

OTC are discussed below with suitable examples.

More than 50 programs were considered and there is

good improvement with OTC. The proposed OTC is

integrated in any reengineering approach so as to

easily eliminate the target system bugs. The below Fig

6.1 explains the efficiency of systems with OTC and

Non OTC process. In the first phase of OTC Java

undergoes the tokenization after that the tokens

patterns matched with inbuilt functions. After the

debugging phase the equivalent Java code will

generate as target system. In our experiment we

provided a conversion of some main features such as

call by reference, call by value, function overloading,

inline functions and inheritance. It is powerful rule

based matching technique. The efficiency may be

improved by hash table.

Fig 6.1 Efficiency on different programs for OTC Vs

non OTC

 The above graph shows the effeciency that

was conducted for different programs and it ensures

that OTC gives considerable improvement in

performance and accuracy during trnsaformation.

OTC provides detailed output on the changes

necessary,will make transformation a much more

efficcient and reliable process.It is able to integrate

on any reengineering process and there is no need to

free up memory which are the benefits of OTC. The

future work proposes the extension of the

transformation to highly tedious legacy systems with

minimum time requirements.The process is much

more efficient when the process executed in the target

compiler itself.

7 Conclusion

In several applications the transformation of

legacy system could be more difficult by mapping the

entire source program into the modern one. In this

approach, we created a common interface that can be

linked with the legacy system which is dynamically

sliced and results are obtained. The main advantage of

applying dynamic slicing technique is, the source

program and its components are identified with

respect to a slicing criterion and the same is converted

and verified after the migration. Since program slicing

is a debugging by using the RL2M and OTC

techniques, the migration can be done without any

errors even with any run time inputs. The output of

Attributes OTC Non-OTC

Arithmetic

operators

38 sec 52 sec

Realtional

operators

40 sec 75 sec

Compound

assignments

52 sec 72 sec

Function calls 63 sec 75 sec

Bitwise

operators

30 sec 56 sec

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 78 Issue 3, Volume 9, March 2012

these two tools is mapped to Java for creating a Java

program to obtain the Java template of classes and

main function.

The Proposed RL2M gives a good conversion

technique when compared to other techniques due to

their semantics checkers and wrapping. As like other

approaches RL2M have to faces some challenges

especially situations like VLSI integration. OTC

recognizes these issues and makes the conversion

accurately for tedious and larger tasks. The future

work proposes the extension of OTC and RL2M

where the exclusive functions in legacy system are to

be mapped and converted to the equivalent target

system then to work as an executable target system

itself without bugs.

References:

[1] Declan Good, “Legacy Transformation”,

Technology Research Club (Club de Investigation

Technological S.A), 33rd Research report, An Jose,

Costa Rica, Aug 2002, pp.125-154.

[2] Dr.Linda H.Rosenberg, “Software Re-

engineering", software Assurance Technology center,

Goddard Space Flight Center, NASA, Technical

Report, 1999. pp 67-109.

[3] H. M. Sneed, “Encapsulation of legacy software:

A technique for reusing legacy software components”,

Annals of Software Engineering, 9:293–313, 2009.

[4] Thiran, J.L. Hainaut, and G.J. Houben. “Database

Wrappers Development: Towards Automatic

Generation”, In Proceedings of the Conference on

Software Maintenance and Reengineering, pages 207–

216. IEEE Computer Society Press, 2005.

[5] Agarwal. H and Horgan. J, “Dynamic program

slicing”, In SIGPLAN Notes no. 6, pp. 246-256, 1990.

[6] Durga Prasad mohapatra,Raib Mall and Rajeev

kumar,” A Novel approach for computing dynamic

slices of object-oriented programs with conditional

statements”, IEEE 2004.

[7] Ati Jain, Swapnil soner, “An approach for

Extracting Business Rules from Legacy C++ code,”,

IEEE 2011.

[8] Chuanqi Tao, Bixin Li, Xiaobing Sun, Chongfeng

Zhang, School of Computer Science and

Engineering, SoutheastUniversity , Nanjing, China,

2010 34th Annual IEEE Computer Software and

Applications Conference.

[9] Ritu BajpaiMona Zaghloul,Department of

Electrical and Computer Engineering, The George

Washington University, Washington DC, USA, 2008

IEEE.

[10] Csaba Farago, Tamas Gergely, “Handling

pointers and unstructured statements in the forward

computed dynamic slice algorithm”, Acta

Cybernetica, v.15 n.4, p.489-508, December 2002.

[11] Wichaipanitch, W.; Samadzadeh, M.H.;

Tangsripairoj, S, “Development and evaluation of a

slicing-based C++ debugger”, International

Conference on Information Technology: Coding and

Computing, 2005. ITCC 2005. Volume 2, 4-6 April

2005 PP.473-478.

[12] Ashida, Y., Ohata, F. and Inoue, K.”Slicing

Methods Using Static and Dynamic Information”,

Proceedings of the 6
th
 Asia Pacific Software

Engineering Conference on Software Engineering,

pp.509-518, Baltimore, Maryland, May 1993.

[13] Basili, V. (1993) “The Experimental Paradigm

in Software Engineering”. In H. Dieter Rombach, V.

R. Basili, & R. Selby (eds.), Experimental Software

Engineering Issues: Critical Assessment and Future

Directives. Proceedings of Dagstuhl-Workshop,

September 1992, published by Springer- Verlag,

#706, Lecture Notes in Computer Software.

[14] Alessandro Bianchi, Danilo Caivano, Giuseppe

Visaggio, “Iterative Reengg of Legacy Systems”,

IEEE Transactions on SE, Vol 29, No 3, 2003.

[15] Zhuopeng Zhang, Hongji Yang, William C.Chu,

“Extracting Reusable Object-Oriented Legacy Code

Segments with Combined Formal Concept Analysis

and Slicing Techniques for Service Integration”,

Proceedings of the Sixth International Conference on

Quality Software, 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS P. Sudhakar, P. Sakthivel

E-ISSN: 2224-3402 79 Issue 3, Volume 9, March 2012

